# CAPÍTULO 12: TABLAS Y GRÁFICAS. EL PLANO CARTESIANO. COORDENADAS.

#### Propiedad Intelectual

El presente documento se encuentra depositado en el registro de Propiedad Intelectual de Digital Media Rights con ID de obra AAA-0181-02-AAA-011058

Fechay hora de registro: 2013-08-27 10:17:15.0

Licencia de distribución: CC by-nc-sa





Queda prohibido el uso del presente documento y sus contenidos para fines que excedan los límites establecidos por la licencia de distribución.

Mas información en http://www.dmrights.com



### www.apuntesmareaverde.org.es



Autores: Concha Fidalgo y Javier Brihuega

Ilustraciones: Banco de Imágenes de INTEF

### Índice

### 1. EL PLANO CARTESIANO. COORDENADAS

- 1.1. SISTEMA DE REFERENCIA CARTESIANO.
- 1.2. COORDENADAS. REPRESENTACIÓN E IDENTIFICACIÓN DE PUNTOS.

### 2. TABLAS Y GRÁFICAS

- 2.1. RELACIÓN ENTRE DOS MAGNITUDES. TABLAS DE VALORES.
- 2.2. REPRESENTANDO PUNTOS. LAS GRÁFICAS.
- 2.3. GRÁFICAS A PARTIR DE SITUACIONES RELACIONADAS CON FENÓMENOS NATURALES Y DE LA VIDA COTIDIANA.
- 2.4. INTERPRETACIÓN Y LECTURA DE GRÁFICAS

#### Resumen

El estudio de las relaciones entre dos magnitudes y su representación mediante **tablas y gráficas** es de gran utilidad para describir, interpretar, predecir y explicar fenómenos naturales y cotidianos que se relacionan de manera funcional.

En muchas ocasiones necesitaremos que los datos recogidos en una tabla sean representados gráficamente y utilizaremos el **sistema de referencia cartesiano**.

El sistema de referencia cartesiano se llama así en honor al filósofo, científico y matemático francés **René Descartes** que vivió entre los años 1596 y 1650. Descartes quiso fundamentar su pensamiento filosófico en la necesidad de tomar un «punto de partida» sobre el que edificar todo el conocimiento. En Geometría, Descartes también comenzó tomando un "punto de origen" para poder representar la geometría plana.



**René Descartes** 

En este tema aprenderemos a utilizar el **lenguaje gráfico** para interpretar y describir situaciones del mundo que nos rodea. También estudiaremos las **funciones** entre dos magnitudes variables, en las que una tiene una relación de dependencia de la otra. *Descartes, Newton y Leibniz ya establecieron la idea de función como dependencia entre dos cantidades variables*.

Así, los contenidos que vamos a tratar nos van a permitir trabajar con las distintas formas de representar algunas situaciones funcionales: numérica, gráfica, verbal o a través de una expresión algebraica (como las que acabamos de estudiar en el tema anterior) y las distintas formas de traducir una expresión de uno a otro lenguaje.

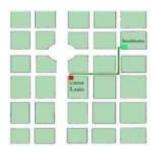
#### 1. EL PLANO CARTESIANO. COORDENADAS

#### 1.1. Sistema de referencia cartesiano.

Constantemente nos encontramos con situaciones en las que tenemos que indicar la localización de objetos o lugares respecto de otros conocidos y, en ocasiones, sus posiciones en un plano o mapa. Para entendernos es muy importante que tengamos una referencia común.

Si quieres indicar a unos amigos que no conocen tu barrio, donde se encuentra una tienda determinada o el Instituto donde estudias, bastará con que les indiques su posición con las referencias que utilicéis todos.

#### Ejemplo 1:



Luis vive en la casa marcada en rojo en el plano adjunto y estudia en un Instituto cercano marcado en verde en el plano.

Para indicar a sus amigos franceses donde está su Instituto les da las siguientes indicaciones:

"Al salir de mi casa vais hacia la derecha y cruzáis dos calles, luego hacia la izquierda cruzáis una calle y ya habéis llegado"

Las referencias izquierda y derecha así como la idea de cruzar una calle son comunes a todos nosotros, además fíjate que en el esquema la línea que indica el camino es muy clara

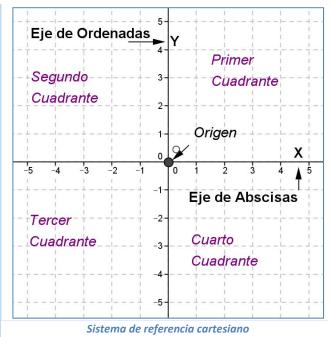
En Matemáticas, en la mayoría de las ocasiones, utilizamos sistemas de referencia cartesianos que también se utilizan en Ciencias Sociales para trabajar los mapas y los planos.

Un sistema de referencia cartesiano consiste en dos rectas numéricas (ver *capítulo 4*) perpendiculares, llamadas ejes. El punto en el que se cortan los ejes es el origen del sistema, también llamado origen de coordenadas.

Normalmente lo representamos con un eje vertical y el otro horizontal. Al eje horizontal le denominamos eje de abscisas o también eje X y al vertical eje de ordenadas o eje Y.

Al cortarse los dos ejes, el plano queda dividido en cuatro zonas, que se conocen como cuadrantes:

- Primer cuadrante: Zona superior derecha
- Segundo cuadrante: Zona superior izquierda
- Tercer cuadrante: Zona inferior izquierda
- Cuarto cuadrante: Zona inferior derecha





#### Ejemplo 2:

"Si estas situado sobre la X que aparece en el mapa, sigue 3 leguas al Este y luego 2 leguas al Norte. Allí está enterrado el tesoro"

Nota: La legua es una antigua unidad de longitud que expresa la distancia que una persona puede andar durante una hora. La legua castellana se fijó originalmente en 5.000 varas castellanas, es decir, 4,19 km

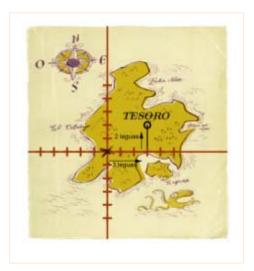
Las referencias Norte, Sur, Este y Oeste nos definen un sistema de referencia cartesiano donde el Origen es el punto marcado con la X.



### **Actividades resueltas**

1. Marca en el plano el punto donde se encuentra el tesoro y como se llegaría a él desde el punto X

Solución:



### **Actividades propuestas**

- 2. Describe y marca en el plano adjunto como llegarías a:
  - a) Cabo Sur
  - b) Bahía Norte
  - c) Playa fea





## Material fotocopiable



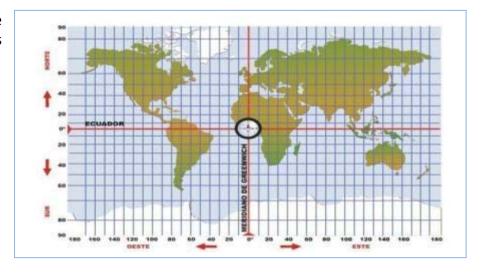
### Isla del Tesoro

Fuente: Banco de Imágenes y sonidos del INTEF.

Colecciones: Robert Louis Stevenson: La isla del tesoro. La isla del tesoro: El mapa del tesoro, llustrador: Loren



- **3.** En el mapa indica en que cuadrante se encuentran los siguientes paises:
  - a) Africa del Sur
  - b) Estados Unidos
  - c) Argentina
  - d) India



### 1.2. Coordenadas. Representación e identificación de puntos.

En las actividades anteriores hemos descrito como llegaríamos a algunos puntos a partir de un sistema de referencia. Para llegar a un punto, partiendo del Origen del sistema de referencia, hemos recorrido una determinada cantidad hacia la derecha o la izquierda y luego otra hacia arriba o hacia abajo. Así cada punto quedará determinado por un par de números a los que llamaremos coordenadas del punto.

Las **coordenadas de un punto A** son un par ordenado de números **(x, y)**, siendo **x** la primera coordenada que la llamamos **abscisa** y nos indica la cantidad a la que dicho punto se encuentra del eje vertical. La segunda coordenada es la **y**, llamada **ordenada** y nos indica la cantidad a la que dicho punto se encuentra del eje horizontal.

Cuando esta cantidad sea hacia la izquierda o hacia abajo la indicaremos con un número **negativo** y si es hacia arriba o a la derecha la indicaremos con uno **positivo**, de la misma manera que hacíamos al representar los números en la recta.



#### Ejemplo 3:

♣ En el grafico el punto A tiene coordenadas (2, 3).

#### Ejemplo 4:

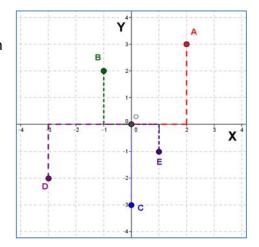
- En la primera Actividad resuelta el TESORO se encuentra en el punto de coordenadas (3, 2).
- En la Actividad propuesta 2 el Cabo Sur se encuentra en el punto de coordenadas (1, -3), la Bahía Norte en el punto (2, 5) y Playa fea en el punto (0, -1).

Nota: El cabo Sur se encuentra en el cuarto cuadrante y su ordenada es una cantidad negativa porque desde el origen tiene que ir hacia el Sur, esto es, tiene que bajar. Y la Playa fea se encuentra en el eje de ordenadas hacía el Sur, por eso su abscisa es 0 y su ordenada negativa.



### **Actividades resueltas**

**4.** Indica cuales son las coordenadas de los puntos marcados en el gráfico adjunto:



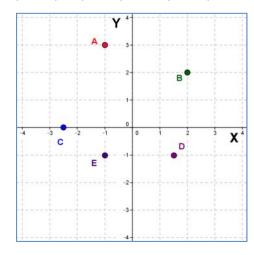
Solución

$$A = (2, 3); B = (-1, 2); C = (0, -3); D = (-3, -2) y E = (1, -1)$$

5. Dibuja un sistema de referencia cartesiano y en él marca los puntos siguientes:

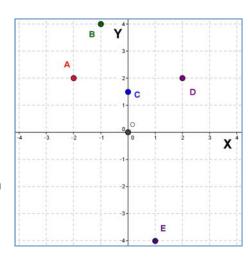
$$A = (-1, 3); B = (2, 2); C = (-2'5, 0), D = (1'5, -1) y E = (-1, -1)$$

Solución



### **Actividades propuestas**

**6.** Indica cuales son las coordenadas de los puntos marcados en el gráfico adjunto:



**7.** Dibuja un sistema de referencia cartesiano y en él marca los puntos siguientes:

$$A = (-4, 2); B = (-3, -3); C = (-0.5, 0.5) y D = (0, -2)$$



### 2. TABLAS Y GRÁFICAS

### 2.1. Relación entre dos magnitudes. Tablas de valores.

En muchas ocasiones tenemos una relación entre dos magnitudes que nos viene dada por la correspondencia entre las cantidades de cada una de ellas. Esta relación puede ser de proporcionalidad, como estudiamos en el capítulo 10, también puede estar dada por una expresión verbal o definida por una fórmula o ecuación de las que acabamos de estudiar en el capítulo 11.

De una relación entre dos magnitudes podemos obtener un conjunto de datos, relacionados dos a dos, que si los ordenamos en una tabla nos facilita su interpretación.

Una **tabla de valores** es una tabla en la que situamos ordenadamente las cantidades correspondientes de dos magnitudes relacionadas.

#### Ejemplo 5:

Los 100 metros lisos es una carrera en la que se tiene que recorrer 100 metros, libres de todo obstáculo, con la mayor rapidez posible. Se considera, en general, como la competición de carreras de velocidad más importante.



Los mejores atletas la realizan en un tiempo de alrededor de 10 segundos de duración corriendo cada 10 metros en un promedio de 1 segundo.

| Longitud (m) | 10 | 20 | 50 | 70 | 90 | 100 |
|--------------|----|----|----|----|----|-----|
| Tiempo (s)   | 1  | 2  | 5  | 7  | 9  | 10  |

Nota: La tabla también se puede poner en sentido vertical

| longitud | tiempo |
|----------|--------|
| (m)      | (s)    |
| 10       | 1      |
| 20       | 2      |
| 50       | 5      |
| 70       | 7      |
| 90       | 9      |
| 100      | 10     |

En algunas ocasiones la relación entre dos magnitudes nos la pueden indicar directamente mediante su tabla de valores

#### Ejemplo 6:

"La sopa estaba muy caliente, así que la dejé enfriar durante cinco minutos, la temperatura de la sopa, según se enfriaba, la indica la tabla siguiente"

| Tiempo (min)     | 0  | 1  | 2  | 3  | 4  | 5  |
|------------------|----|----|----|----|----|----|
| Temperatura (°C) | 80 | 60 | 50 | 44 | 40 | 39 |



#### Ejemplo 7:

Las notas de Matemáticas y Tecnología, en la segunda evaluación, de un grupo de 1º de E.S.O. fueron las recogidas en la siguiente tabla:

| Matemáticas | 6 | 7 | 10 | 6 | 5 | 6 | 9 | 7 | 5 | 8  | 3 | 8 | 9  | 1 | 5 | 5 | 4 | 6  | 5 | 9 | 6 | 10 | 6 | 3 | 4 | 1 | 8 | 6 | 9 | 7 |
|-------------|---|---|----|---|---|---|---|---|---|----|---|---|----|---|---|---|---|----|---|---|---|----|---|---|---|---|---|---|---|---|
| Tecnología  | 5 | 6 | 7  | 8 | 6 | 8 | 7 | 6 | 4 | 10 | 2 | 8 | 10 | 1 | 5 | 6 | 7 | 10 | 3 | 5 | 8 | 10 | 9 | 3 | 5 | 1 | 6 | 5 | 5 | 8 |

En otras ocasiones desconocemos cuales son las magnitudes con las que estamos trabajando, tan solo conocemos los valores relacionados, y las solemos indicar con las letras X e Y

#### Ejemplo 8:

🖶 En la tabla adjunta tenemos la relación entre la magnitud X y la magnitud Y

| Х | -2 | -1 | 0 | 1 | 2 | 3 |
|---|----|----|---|---|---|---|
| Υ | 2  | 3  | 4 | 5 | 6 | 7 |

### **Actividades resueltas**

**L** El precio de un kilo de queso especial de cabra, de la sierra de Madrid, es de 18 € y se vende al peso. Construye una tabla de valores, con seis cantidades diferentes, que relacione el peso del queso con su precio.



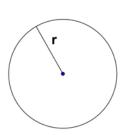
#### Solución

Como nos piden seis cantidades diferentes vamos a escoger algunas que nos parecen cotidianas hasta un kilo, por ejemplo, 100 g, 250 g (cuarto de kilo), 500 g (medio kilo), 625 g, 750 g y 1000 g.

Como el precio y el peso son magnitudes proporcionales sabemos (capítulo 10) completar la tabla.

| Peso (g)   | 100  | 250  | 500 | 625   | 750   | 1000 |
|------------|------|------|-----|-------|-------|------|
| Precio (€) | 1,80 | 4,50 | 9   | 11,25 | 13,50 | 18   |

Como sabes el área de un círculo se puede calcular mediante la fórmula , en donde es el radio del círculo (utilizamos ). Construye una tabla de valores desde un radio de 1 cm a uno de 5 cm, de centímetro en centímetro.



#### Solución

Nos piden que elaboremos una tabla para los valores del radio 1, 2, 3, 4 y 5.

Para ello sustituimos  $m{r}$  en la fórmula por cada uno de esos valores y obtenemos:

para 
$$r = 1 \rightarrow A = 3.14 \cdot 1^2 = 3.14$$
; para  $r = 2 \rightarrow A = 3.14 \cdot 2^2 = 12.56$ ; ...

| Radio (cm) | 1    | 2     | 3     | 4     | 5     |
|------------|------|-------|-------|-------|-------|
| Área (cm²) | 3,14 | 12,56 | 28,26 | 50,24 | 78,50 |



### **Actividades propuestas**

- **8.** Construye una tabla de valores, con cinco cantidades diferentes, que relacione el consumo de un coche y los kilómetros que recorre sabiendo que su consumo medio es de 5 litros cada 100 kilómetros.
- **9.** Construye una tabla de valores, con cinco cantidades diferentes, en que se relacione el lado de un cuadrado y su superficie.
- 10. Construye una tabla de valores, con seis cantidades diferentes, que represente la siguiente situación: "Una compañía de telefonía cobra 5 céntimos de euro por establecimiento de llamada y 4 céntimos por minuto hablado"

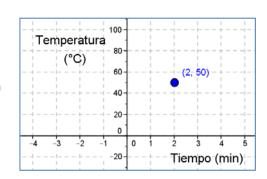
### 2.2. Representando puntos. Las gráficas.

Cada par de datos correspondientes de una relación entre dos magnitudes los podemos **representar** en un sistema cartesiano

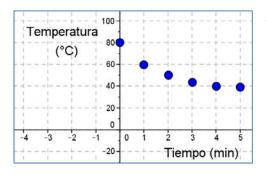
#### Ejemplo 9:

♣ En la relación del ejemplo 6 veíamos que a los 2 minutos, la sopa tenía una temperatura de 50 °C.

Este par de números son las coordenadas de un punto (2, 50) en un sistema de referencia cartesiano en el que en el eje de abscisas representamos la magnitud *Tiempo* medida en minutos y en el eje de ordenadas representamos la magnitud *Temperatura* medida en grados centígrados.



Si representamos en un sistema de referencia cartesiano todos los pares de datos de una tabla de valores obtenemos una **gráfica**.



Si representamos todos los pares de datos de la tabla de valores del ejemplo anterior obtenemos la siguiente gráfica:

En ocasiones podríamos haber dado muchos más datos en la tabla de valores y al representarlos nos quedaría casi una línea. En estos casos la **gráfica**, **uniendo los puntos**, estaría constituida por **una línea** que en muchas situaciones sería continua.

#### Ejemplo 10:

4 Si llenamos un depósito de agua mediante un surtidor que vierte 75 litros de agua por minuto

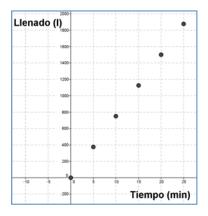


podemos calcular una tabla de valores con la cantidad de agua que va teniendo el depósito (llenado) en relación al tiempo que ha ido pasando.

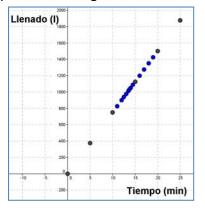


| tiempo (min) | 0 | 5   | 10  | 15   | 20   | 25   |
|--------------|---|-----|-----|------|------|------|
| llenado (I)  | 0 | 375 | 750 | 1125 | 1500 | 1875 |

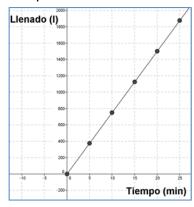
Dibujamos su gráfica a partir de esta tabla de valores



En esta ocasión tendría sentido medir la cantidad de agua que va teniendo el depósito cada menos tiempo. Si lo representamos podría quedar de la siguiente manera:



Si representáramos todos los posibles valores nos quedaría la siguiente gráfica:



Nota: La gráfica comienza, en el tiempo 0, en el instante en que empezamos a llenar el depósito. No hay gráfica en el tercer cuadrante porque no tiene sentido un tiempo negativo.



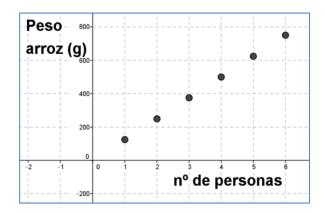
#### Ejemplo 11:

♣ En la siguiente situación: "Una paella para seis personas necesita 750 g de arroz" podemos construir una tabla de valores en la que se relacionan el número de personas y la cantidad de arroz que se necesita:



| Número de personas | 1   | 2   | 3   | 4   | 5   | 6   |
|--------------------|-----|-----|-----|-----|-----|-----|
| Peso arroz (g)     | 125 | 250 | 375 | 500 | 625 | 750 |

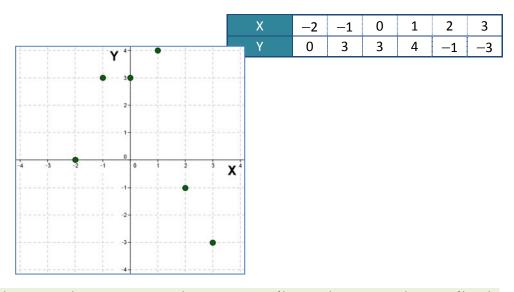
y podemos construir una gráfica de puntos con estos valores:



Sin embargo no podemos calcular valores intermedios (para dos personas y media por ejemplo), pues no podemos dividir a una persona y, por lo tanto, no tiene sentido unir los puntos de la gráfica.

#### Ejemplo 12:

♣ También podemos representar la relación entre las magnitudes X e Y del ejemplo 8 a partir de su tabla de valores:



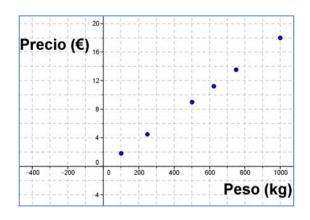
Nota: En este caso no podemos unir los puntos, pues al no conocer cuáles son las magnitudes ni cuál es la relación entre ellas, salvo en los puntos que vienen determinados por la tabla de valores, no podemos saber, por ejemplo, qué valor tendría la magnitud Y si la magnitud X valiese 1,5.



#### **Actividades resueltas**

Construye una gráfica de puntos a partir de los datos de la tabla de valores de la Actividad resuelta 8 y, si es posible, une sus puntos:

#### Solución

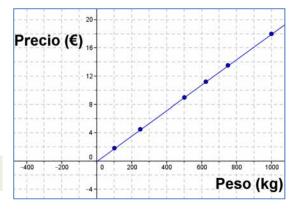




Sí, en este caso es posible porque podemos calcular el precio para cualquier peso (es una relación proporcional).

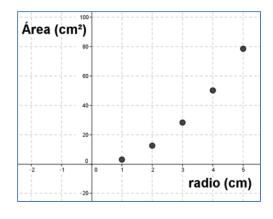
La gráfica quedaría:

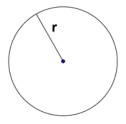
Nota: No hay gráfica en el tercer cuadrante porque no tiene sentido un peso negativo



Construye una gráfica a partir de los datos de la tabla de valores de la Actividad resuelta 9 y, si es posible, construye una gráfica uniendo sus puntos.

#### Solución:



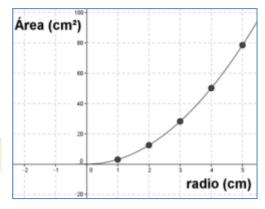




Sí, es posible, porque podemos calcular el área para cualquier radio.

La grafica quedaría:

Nota: No hay gráfica en el tercer cuadrante porque no tiene sentido un radio negativo



### **Actividades propuestas**

- **11.** Construye una gráfica a partir de los datos de la tabla de valores de la Actividad propuesta sobre el consumo de un coche y los kilómetros que recorre sabiendo que su consumo es de 5 litros cada 100 kilómetros. Si es posible, construye una gráfica uniendo sus puntos.
- **12.** Construye una gráfica a partir de los datos de la tabla de valores de la Actividad propuesta sobre la relación entre el lado de un cuadrado y su superficie. Si es posible, construye una gráfica uniendo sus puntos.
- **13.** Construye una gráfica a partir de los datos de la tabla de valores de la Actividad propuesta sobre los costos en una *compañía de telefonía*. Si es posible, construye una gráfica uniendo sus puntos.
- 14. En un recibo del gas de la vivienda de Juan viene la siguiente distribución de gasto:

Consumo de gas: ........0,058 € por kw/h Impuesto especial: ......0,002 € por kw/h Término fijo: .......4,30 € por mes Alquiler de contador.... 2,55 € La factura era de dos meses, había consumido 397 kw/h y el gasto ascendía a 34,97 €. Otra factura anterior el gasto era de 26,15 € con un consumo de 250 kw/h.

Construye una gráfica que relacione el consumo de gas y

el gasto. ¿Tiene sentido unir los puntos?

### 2.3. Gráficas a partir de situaciones.

En la mayoría de las situaciones que hemos estudiado hasta ahora, hemos podido calcular los pares de valores relacionados, porque se trataban de relaciones de proporcionalidad o de relaciones dadas por una fórmula que conocíamos.

Esto no siempre ocurre. A veces nos encontrarnos con que nos describen una situación en la que nos dan una información entre dos magnitudes sin aportarnos apenas cantidades numéricas.

En muchas ocasiones una situación cotidiana o relacionada con fenómenos naturales descrita verbalmente se puede representar mediante una gráfica de manera directa.

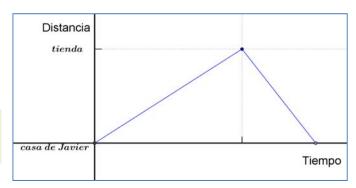
#### Ejemplo 13:

Javier tiene que ir a comprar a una tienda algo alejada de su casa, como no tiene prisa decide ir dando un paseo. Justo cuando llega a la tienda se da cuenta de que se le ha olvidado la cartera y no tiene dinero para comprar. Corriendo vuelve a su casa a por la cartera.



A partir de este enunciado podemos elaborar una grafica como esta:

Nota: la distancia entre la casa de Javier y la tienda no la conocemos, pero sabemos que en la vuelta ha tardado menos tiempo que en la ida.



#### Ejemplo 14:

La temperatura en una montaña va descendiendo según ganamos en altitud. En la cima llegamos a temperaturas bajo cero.

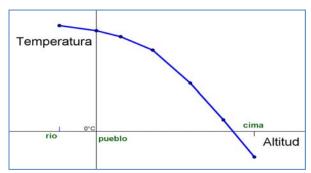


Podemos representar una situación en la que medimos la temperatura según subimos desde un pueblo a la cima de una

montaña en una gráfica como la siguiente:

En el sistema de referencia cartesiano

que hemos establecido, el origen está en el pueblo y es por ello por lo que el rio tiene abscisa negativa, porque está más bajo. En la cima la temperatura es negativa y por ello su ordenada es negativa.

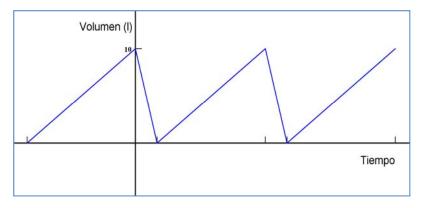


#### Ejemplo 15:

♣ En un establecimiento comercial, el depósito de agua de los servicios públicos va llenándose poco a poco hasta alcanzar los 10 L de agua y, en ese momento, se vacía regularmente. Cuando está vacío se repite el proceso. En llenarse tarda el quíntuple de tiempo que en vaciarse.

Podemos hacer una gráfica que refleje la variación de la cantidad de agua (volumen) del depósito en función del tiempo, a partir de un momento en el que el depósito está lleno.

El origen de nuestro sistema de referencia cartesiano esta en un momento con el depósito lleno, el tiempo negativo significa que es anterior a ese momento.



Las **gráficas** nos dan una visión más clara de la situación que estamos estudiando, además de ellas podemos obtener una **tabla de valores** y así hacer una **interpretación** más precisa.



#### Ejemplo 16:

♣ En la situación anterior si consideramos que tarda un minuto en vaciarse el depósito, tardará cinco minutos en llenarse y podemos obtener la siguiente tabla de valores:

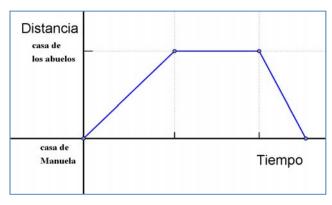
| Tiempo (min) | -5 | 0  | 1 | 6  | 7 | 12 |
|--------------|----|----|---|----|---|----|
| Volumen (I)  | 0  | 10 | 0 | 10 | 0 | 10 |

Nota: el valor negativo del tiempo quiere decir que el depósito comenzó a llenarse con anterioridad a la situación inicial (origen) en el que el depósito está lleno.

### **Actividades resueltas**

Manuela va algunas tardes a casa de sus abuelos donde pasa un buen rato con ellos. Después vuelve rápidamente a su casa para hacer los deberes antes de cenar. Construye una gráfica de esta situación

#### Solución:



■ "Este verano Juan fue en bicicleta a casa de sus abuelos que vivían en un pueblo cercano, a 35 kilómetros del suyo. A los 20 minutos había recorrido 10 km; en ese momento comenzó a ir más deprisa y tardó 15 minutos en recorrer los siguientes 15 km. Paró a descansar durante 10 minutos y, después, emprendió la marcha recorriendo los últimos 10 km en 15 minutos."



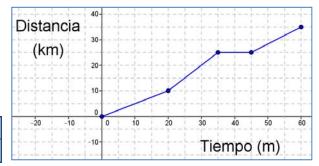
Construye una gráfica de esta situación y, a partir de ella, confecciona una tabla de valores.

#### Solución

La gráfica sería:

#### Y la tabla de valores:

| Tiempo (min)   | 0 | 20 | 35 | 45 | 60 |
|----------------|---|----|----|----|----|
| Distancia (km) | 0 | 10 | 25 | 25 | 35 |





### **Actividades propuestas**

- **15.** La familia de Joaquín fue un día de excursión al campo en coche; después de pasar el día volvieron y a mitad de camino pararon durante un buen rato a echar gasolina y tomar unos refrescos. Al final llegaron a casa.
  - Construye una gráfica de esta situación.
- **16.** Vanesa salió a dar un paseo, primero fue a casa de su amiga Inés, que vive a 250 metros, y tardó 6 minutos en llegar. La tuvo que esperar otros 6 minutos en su portal y, después, tardaron 15 minutos en llegar al parque, que estaba a 600 m, donde merendaron y charlaron durante media hora. Por último Vanesa regresó a casa rápidamente, porque le había llamado su madre. Sólo tardó 5 minutos. Construye una gráfica de esta situación y, a partir de ella, confecciona una tabla de valores.

### 2. 4. Interpretación y lectura de gráficas.

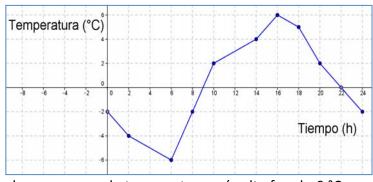
Las gráficas resumen de manera eficaz la información sobre la relación entre dos magnitudes, por ello se suelen emplear mucho, tanto en situaciones de carácter científico o social, como en la información que se emplea en los medios de comunicación. Su lectura e interpretación es pues de mucha utilidad.

De las coordenadas de los puntos de una gráfica podemos extraer datos muy interesantes para la comprensión de la situación que nos muestra la gráfica (la ordenada más alta o más baja, como se relacionan las magnitudes,...)

#### Ejemplo 17:

♣ El gráfico adjunto muestra las temperaturas a lo largo de un día de invierno en el pico de Peñalara.

A partir de esta gráfica podemos obtener más información sobre la situación planteada. Así, por ejemplo podemos ver que la temperatura mínima que se alcanzó ese día fue de -6 °C a las 6 h de la mañana, nos lo indica el punto de coordenadas (6, -6) que tiene la ordenada menor de todos los puntos de la gráfica. Es un **mínimo**.





**↓** Del mismo modo podemos ver que la temperatura más alta fue de 6 °C, que se obtuvo a las 16 h. El punto de coordenadas (16, 6) así nos lo indica. Es un **máximo**.

Podemos también afirmar que la temperatura fue subiendo desde las 6 h hasta las 16 h pues las ordenadas de los puntos cuya abscisa está entre esas horas van **creciendo**. Es creciente.

Así mismo el punto (10, 2) nos indica que a las 10 h de la mañana hacía una temperatura de 2 °C, temperatura que se alcanzó también a las 20 h, aunque esta vez bajando.

El hecho de que de 10 h a 14 h subiera la temperatura menos que en horas anteriores (gráfica menos inclinada) pudo ser debido a causas climatológicas concretas, como que se pusiera la niebla, y después, de 14 a 16 h, hay una subida rápida (pudo salir el sol). La gráfica nos indica que algo así pudo pasar. A partir de las 16 horas la temperatura baja, la gráfica es **decreciente**.



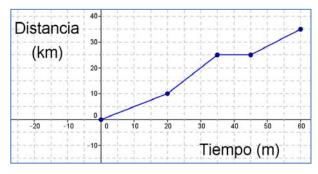
La temperatura es de 0 ºC hacia las 9 horas y a las 22 horas. (0, 9) y (0, 22) Son los puntos en que la gráfica corta al eje de abscisas. Al eje de ordenadas lo corta en (-2, 0).

#### Ejemplo 18:

La actividad resuelta que nos describe el recorrido de Juan de camino a casa de sus abuelos. La gráfica que dibujamos y resume el viaje era la que figura a la derecha.

De la gráfica, además de lo que ya conocíamos y que nos ayudo a dibujarla, podemos extraer, "de un simple vistazo" más información.

Por ejemplo, si miramos a la gráfica podemos observar que en el kilómetro 20 llevaba 30 minutos pedaleando,



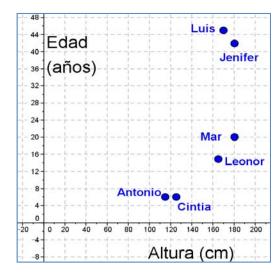
Viaje de Juan a casa de sus abuelos

o que a los 10 minutos había recorrido 5 kilómetros, que el tramo más rápido fue de los 20 a los 35 minutos (se ve mayor inclinación), o que en el minuto 40 estaba parado.

Es una gráfica continua, pues podemos dibujarla sin levantar el lápiz.

#### Ejemplo 19:

La gráfica siguiente nos indica la relación entre la edad y la estatura de los miembros de una familia.



Si observamos los puntos de esta grafica veremos que Jenifer y Luis son los puntos (180, 43) y (170, 45) y representan a los padres que tienen 43 y 45 años y miden 180 y 170 cm respectivamente.

Los pequeños Antonio y Cintia son mellizos de 6 años y miden 115 y 125 centímetros. Mar tiene 20 años y mide 180 cm, representada por el punto (180, 20) y, por último Leonor mide 165 y tiene 15 años.

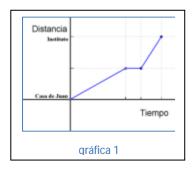
De la gráfica también podemos deducir que Mar y su madre, Jenifer, son los más altos de la familia, que Luis es el de más edad y que Cintia mide 10 centímetros más que su hermano mellizo.

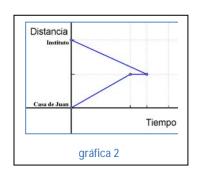
### **Actividades resueltas**

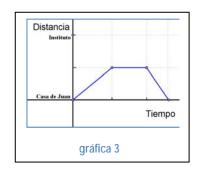
Observando las gráficas de debajo, determina cuál es la que mejor se ajusta a la situación siguiente:

"Antonio va al Instituto cada mañana desde su casa, un día se encuentra con un amigo y se queda charlando un ratito. Como se la ha hecho tarde sale corriendo para llegar a tiempo a la primera clase"









#### Solución

La gráfica 1 **es la que más se ajusta** pues: el segmento horizontal indica que durante un tiempo pequeño no avanzó en distancia, esto es que estaba parado, y la inclinación del tercer segmento es mayor que la del primero, lo que indica que en menos tiempo recorrió más distancia, esto es, que fue más rápido.

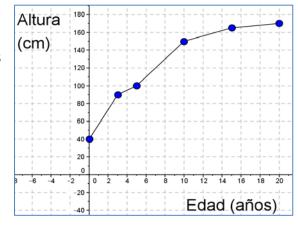
La gráfica 2 **no puede ser**, pues Juan no puede estar en dos sitios distintos, a la vez, en el mismo momento. Esta gráfica indica, por ejemplo, que en el instante inicial (tiempo 0) Juan está en su casa y en el instituto al mismo tiempo.

La gráfica 3 **no puede ser**, ya que la gráfica nos indica que Juan regresa a su casa después de charlar con su amigo y no va al instituto.

La gráfica siguiente nos muestra la variación de la estatura de Laura con relación a su edad.

Observando la gráfica contesta a las siguientes preguntas:

- a) ¿A qué edad medía 1 metro?
- b) ¿Cuánto medía al nacer?
- c) ¿Cuánto medía a los 10 años? ¿Y a los 20?
- d) ¿En qué periodo creció menos?



#### Solución:

- a) Mirando a la gráfica observamos que el punto (5, 100) es el que nos piden pues la ordenada es 100 (1 metro), luego Laura tenía 5 años.
- b) El punto que representa el nacimiento es el (0, 40) luego midió 40 centímetros
- c) Del mismo modo observamos que a los 10 años medía 155 centímetros y a los 20 años 170.
- d) En la gráfica observamos que el tramo menos inclinado es el que va de los 15 a los 20 años, eso quiere decir que en ese tramo Laura creció menos.

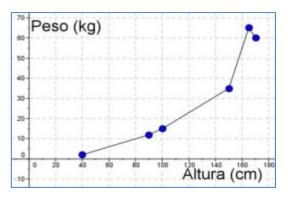


### **Actividades propuestas**

**17.** La gráfica siguiente nos muestra la variación del peso de Laura con relación a su estatura a lo largo de su vida.

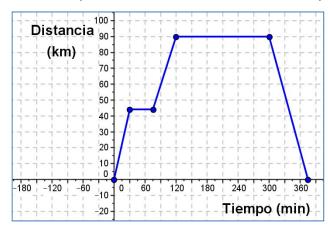
Analiza la gráfica, comenta la situación y responde a las siguientes preguntas:

- a) ¿Cuánto pesaba cuando medía un metro? ¿Y cuando medía 150 cm?
- b) ¿Cuánto medía cuando pesaba 55 kg?
- c) ¿A qué altura pesaba más? ¿Laura adelgazó en algún momento?



**18.** La siguiente gráfica representa una excursión en autobús de un grupo de 1º de E.S.O. a Toledo, pasando por Aranjuez.

Sabiendo que Toledo está a 90 km del Instituto y Aranjuez a 45 km:



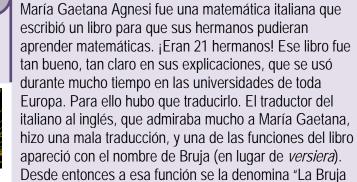
- a) ¿Cuánto tiempo pararon en Aranjuez? ¿y en Toledo?
- b) ¿Cuánto tiempo tardaron en llegar a Toledo? ¿y en regresar al Instituto?
- c) Si salieron a las 9 h de la mañana ¿A qué hora regresaron? ¿A las diez y media dónde se encontraban?
  - d) Haz una descripción verbal del viaje

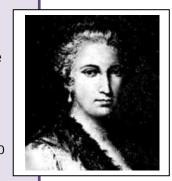


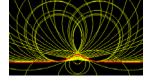
### **CURIOSIDADES. REVISTA**

### La Bruja de Agnesi

Existe una función que se llama la Bruja de Agnesi.





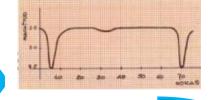


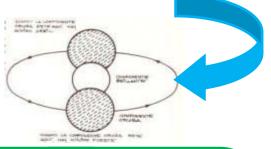
#### La luz de las estrellas

Los astrónomos deben deducir lo que saben de las estrellas midiendo la luz que nos llega de ellas. En la constelación de Perseo hay una estrella cuyo brillo varía según la gráfica adjunta con un periodo de 65 horas. Entonces han deducido que no se trata de una única estrella sino de una estrella doble, dos estrellas muy próximas, una más brillante y la otra más oscura que giran una alrededor de la otra.

de Agnesi".

Intenta ser un astrónomo o astrónoma y explicar el comportamiento de esa estrella doble.







La gráfica indica la evolución del **ozono** en la estación de calidad del aire de Casa de Campo de Madrid durante un día, el 18 de diciembre de 2014. Observa como sube en las horas centrales del día.

En la página de la Comunidad de Madrid puedes conocer cómo está la calidad del aire en cada momento y saber cuáles son los valores umbrales que no se deberían rebasar.

#### Calidad del aire



Autores: Concha Fidalgo y Javier Brihuega Ilustraciones: Banco de Imágenes de INTEF

### **RESUMEN**

|                                        |                                                                                                                                                                                                                    | Ejemplos                                                                                                                     |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Sistema de<br>referencia<br>cartesiano | Dos rectas numéricas perpendiculares, llamadas <b>Ejes</b> , que se cortan en un punto llamado <b>Origen</b> . El eje horizontal se denomina <b>eje de abscisas</b> , y al eje vertical, <b>eje de ordenadas</b> . | 3 -2 -1 0 1 2 3                                                                                                              |
| Coordenadas                            | Es un par ordenado de números (x, y), que nos indica donde se encuentra el punto respecto al sistema de referencia cartesiano que estamos utilizando.                                                              | Coordenadas  Y 3  A = (2, 3)  -2 -1 0 1 2 3 4 5                                                                              |
| Tabla de valores                       | Tabla en la que situamos ordenadamente las cantidades correspondientes de dos magnitudes relacionadas.                                                                                                             | Tiempo (min)         0         30         80         100           Distancia (km)         0         10         20         30 |
| Gráfica                                | Si representamos en un sistema de referencia cartesiano todos los pares de datos de una tabla de valores obtenemos una gráfica.                                                                                    | Area (cm²)                                                                                                                   |
| Gráficas a partir de situaciones       | Una situación cotidiana o relacionada con fenómenos<br>naturales descrita verbalmente se puede representar<br>mediante una gráfica                                                                                 | Temperatura  cima rio pueblo Altitud                                                                                         |



### EJERCICIOS Y PROBLEMAS de 1º de ESO

### El plano cartesiano. Coordenadas

1. Representa en tu cuaderno los puntos siguientes en un sistema de referencia cartesiano:

A = (3, 4)

$$B = (-3, 1)$$

$$B = (-3, 1)$$
  $C = (-1, -3)$   $D = (4, -2)$   $O = (0, 0)$ 

$$D = (4, -2)$$

$$O = (0, 0)$$

2. Representa en tu cuaderno, en otro sistema éstos otros puntos:

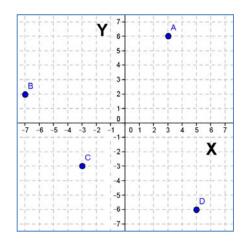
E = (6, 0)

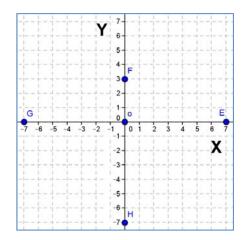
$$F = (2, 0)$$

$$F = (2, 0)$$
  $G = (-3, 0)$ 

$$H = (-7, 0)$$

3. Escribe en tu cuaderno las coordenadas de los siguientes puntos:





Analiza las coordenadas de cada punto, sus signos, sus valores, etc. ¿Tienen algo especial las coordenadas de los puntos E, F, G y H? ¿Y el punto O tiene coordenadas? ¿Cómo se llama éste punto?

- 4. Dibuja, en el árbol del gráfico, un sistema de referencia cartesiano, con el origen en el punto F.
  - a) Indica las coordenadas de los puntos marcados en el gráfico.
  - b) Indica en que cuadrante, o eje, está cada punto.
- **5.** Representa los siguientes puntos en un sistema de referencia cartesiano:

R = (-3, -10) V = (-3, 10)

Une estos puntos en orden alfabético y finalmente une el último con el primero. ¿Qué polígono obtienes? Calcula el área y el perímetro de éste polígono.

Z = (3, 10)

M = (3, -10)





- **6.** El dibujo muestra el mapa de Mesopotamia en la antigüedad.
- a. Representa un sistema de referencia cartesiano, con origen en Babilonia.
  - b. Elige las unidades más adecuadas para cada eje.
- c. Indica qué coordenadas tienen las ciudades de Jerusalén, Persépolis y Uruk.
- 7. Representa los siguientes puntos en un sistema de referencia cartesiano:

A = 
$$(-3, -2)$$
; B =  $(-3, -3)$ ; C =  $(-1, 5)$ ; D =  $(2, 3)$ ; E =  $(2, -2)$ ;  
F =  $(-1, -2)$ ; G =  $(-1, 0)$ ; H =  $(-2, 0)$ ; I =  $(-2, -2)$ 

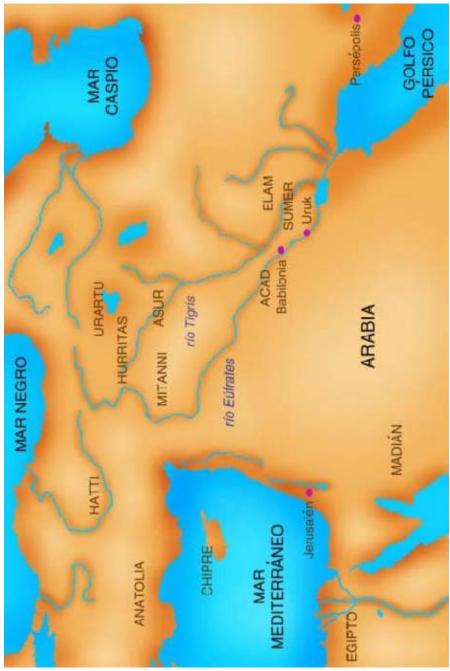
- a) Une estos puntos en orden alfabético y finalmente une el último con el primero.
- b) Indica en que cuadrante, o eje, está cada punto.
- **8.** En tu cuaderno, elige dos puntos en cada cuadrante y cuatro puntos en cada eje, dales un nombre y escribe las coordenadas que tiene cada punto.
- **9.** El gráfico muestra el plano de una ciudad. En él tienes marcado el sistema de coordenadas cartesianas y las unidades.
  - a. Indica las coordenadas del Centro Cultural y del Centro de Salud respecto a éstos ejes.
  - b. ¿Qué calle está en las coordenadas

(-1, 3)? ¿Y en las coordenadas (0, -1)?





## Material fotocopiable

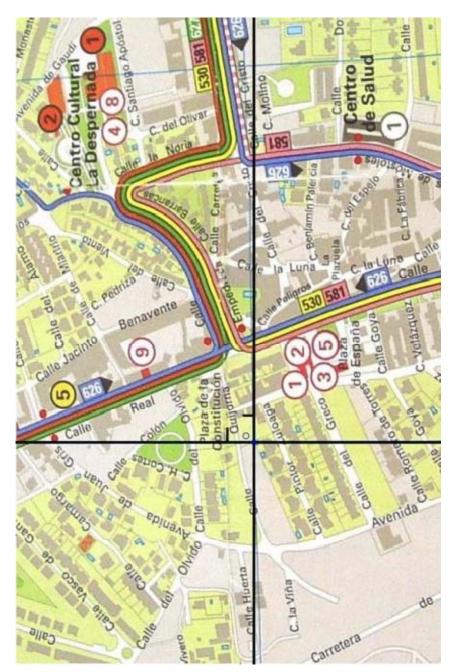


Mapa de Mesopotamia

Fuente: Banco de Imágenes y sonidos del INTEF.



## Material fotocopiable



Plano de una ciudad

Fuente: Banco de Imágenes y sonidos del INTEF.



### Tablas y Gráficas

**10.** La siguiente tabla de valores relaciona el peso en kilogramos de uvas y su precio en euros. Cópiala en tu cuaderno y complétala.

| Peso (Kg)  | 1,5 |     | 3,6 |   | 6,5 |
|------------|-----|-----|-----|---|-----|
| Precio (€) | 2,7 | 3,6 |     | 9 |     |



- **11.** Construye una gráfica de puntos a partir de los datos de la tabla de valores del ejercicio 10 y, si es posible, construye la gráfica uniendo sus puntos.
- **12.** Construye tablas de valores, con cuatro cantidades diferentes, que nos expresen las siguientes relaciones:
  - a. El lado de un cuadrado y su área
  - b. Un número y la cuarta parte de dicho número.
  - c. Un número y su número opuesto
  - d. Un número y su número inverso.
  - e. La arista de un cubo y su volumen





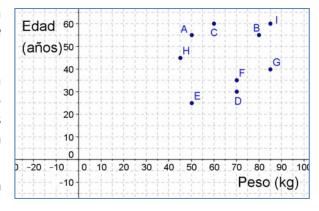
**13.** Copia en tu cuaderno y completa la siguiente tabla de valores sabiendo que las magnitudes P y Q son magnitudes directamente proporcionales:

| Р | 0 | 1 | 2 |    | 7  | 9 |
|---|---|---|---|----|----|---|
| Q |   |   |   | 15 | 21 |   |

**14.** La gráfica siguiente nos indica la relación entre la edad y el peso de los profesores de un grupo de 1º de E.S.O. de un Instituto de Madrid.

Sabemos que la profesora de Matemáticas es la más joven. La de Ciencias de la Naturaleza tiene 35 años. El profesor de Ciencias Sociales es de los mayores y de los que más pesan, y la de Educación Física es la más delgada.

Indica que punto de la gráfica corresponde a cada uno de estos cuatro profesores.



**15.** Haz una gráfica con los datos de la tabla siguiente:

| X | 0 | 1 | 2 | 5 | 7 | 9          |
|---|---|---|---|---|---|------------|
| Y | 2 | 5 | 8 | 6 | 2 | <b>-</b> 2 |

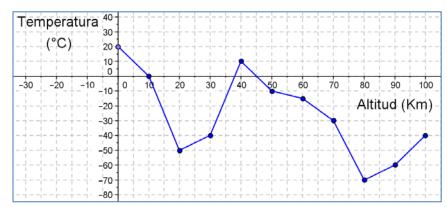


- **16.** Construye gráficas de puntos a partir de los datos de las tablas de valores que has realizado en el ejercicio 12 y, si es posible, construye las gráficas que resultan de unir sus puntos. En cada apartado, indica en qué cuadrantes es posible tener gráfica.
- **17.** Construye una gráfica de puntos a partir de los datos de la tabla de valores que has completado en el ejercicio 13 y, si es posible, construye la gráfica uniendo sus puntos.
- **18.** Inventa cuatro tablas de valores, con seis cantidades diferentes, y representa las gráficas correspondientes. Haz que dos tablas correspondan a situaciones reales y las otras dos no.
- **19.** En un estudio del Instituto Nacional de Estadística del año 2012, nos indican el porcentaje de hogares españoles que tienen acceso a Internet en el periodo 2007 a 2012, estos datos vienen recogidos en la siguiente tabla:

| Años                                  | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
|---------------------------------------|------|------|------|------|------|------|
| Viviendas con acceso a Internet ( % ) | 45   | 51   | 54   | 59   | 64   | 68   |

Representa estos datos en una gráfica de puntos. ¿Podríamos unir estos puntos?

- 20. La gráfica siguiente muestra la temperatura que se ha medido, en la atmosfera, a distintas altitudes.
  - a. ¿A qué altitudes la temperatura es de 0 °C?
  - b. ¿Cuál es la temperatura a los 30 km de altitud? ¿y a nivel del mar (0 km)?
  - c. ¿Cuál es la temperatura más alta que se ha medido? ¿a qué altitud?
  - d. ¿Cuál es la temperatura más baja que se ha medido? ¿a qué altitud?

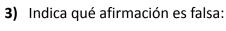




### **AUTOEVALUACIÓN de 1º de ESO**

- 1) El punto de coordenadas A = (3, -1) está situado en el:
- a) primer cuadrante
- b) segundo cuadrante
- c) tercer cuadrante
- d) cuarto cuadrante.

- 2) Las coordenadas de los puntos indicados son:
- a) (2, 1), (1, -2)
- b) (2, 1), (-1, 2).
- c) (1, 2), (-2, 1)
- d) (-2, 1), (2, 2)



- e) El eje de abscisas es horizontal
- f) El eje de ordenadas es vertical
- g) El eje de abscisas es perpendicular al eje de ordenadas
- h) El eje de abscisas es el eje Y
- 4) Los puntos de coordenadas A = (-3, 0), B = (-1, 0), C = (2, 0), D = (3, 0) están todos ellos en el:
- a) eje de ordenadas b) primer cuadrante c) eje de abscisas
  - d) segundo cuadrante
  - 5) Los puntos de coordenadas A = (0, 0), B = (0, 1), C = (0, 2), D = (0, 3) están todos ellos en el:
- a) eje de ordenadas b) primer cuadrante c) eje de abscisas
- d) segundo cuadrante
- **6)** Los valores que completan la tabla de proporcionalidad directa son:

| Personas     | 1 | 4 | 8 |    |
|--------------|---|---|---|----|
| Kg de comida | 3 |   |   | 27 |

- a) 6, 12, 8
- b) 12, 24, 9 c) 8, 16, 12
- d) 16, 32, 7
- 7) La siguiente tabla de valores puede corresponder a:

| Х | 3 | 9 | 15 | 27 |
|---|---|---|----|----|
| Υ | 1 | 3 | 5  | 9  |

- a) una proporcionalidad directa.
- b) una proporcionalidad inversa
- c) la relación entre el lado de un cuadrado y su área.
- d) la relación entre el radio del círculo y su área
- 8) Indica en los casos siguientes aquel que NO es una función:
- a) La temperatura de la sopa a lo largo del tiempo.
- b) Y = 2 X.
- c) El área de un círculo como función del radio.
- d) El área de un cuadrado y su color

- 9) Indica qué afirmación es falsa:
- a) El origen de coordenadas es la intersección entre el eje de abscisas y el de ordenadas
- b) En una función a cada valor de la variable independiente le corresponde un único valor de la variable dependiente
- c) En una función a cada valor de la variable dependiente le corresponde un único valor de la variable independiente.



#### PARA EL PROFESORADO

El concepto de función es uno de los conceptos básicos en Matemáticas y, al mismo tiempo, uno de los más difíciles de adquirir por los estudiantes de secundaria. Esto no es extraño si analizamos cómo ha evolucionado dicho concepto a lo largo de la historia.

En la historia de las Matemáticas comienza a plantearse el concepto de función hacia el siglo XIV y ha sido uno de los que ha presentado una mayor dificultad, siendo en el siglo XX uno de los ejes de la investigación matemática. Incluso para los matemáticos del siglo XVIII no estaba muy claro el concepto de función. Por ejemplo, en un artículo de *Jean Bernoulli* publicado en 1718 se encuentra esta primera definición: "Una función de una variable es definida aquí como una cantidad compuesta de alguna manera por una variable y constantes". Los matemáticos estaban dispuestos a aceptar dos tipos de funciones, las que venían dadas por una fórmula o las que se trazaban arbitrariamente dibujando su gráfica. La idea abstracta de función como correspondencia tardó un tiempo en aparecer. Fue *Jean Baptiste Joseph Fourier* (1768 – 1830) en su obra "La teoría analítica del calor" el motor para la profundización del concepto de función. Recordemos que cuando Fourier expuso su desarrollo de una función en serie trigonométrica, empezó a discutirse sobre qué era una función, cuáles podían ajustarse a ese desarrollo, y este hecho fue un catalizador en la historia de las Matemáticas que, entre otras muchas cosas, llevó a formalizar este concepto. La noción moderna de función es muy reciente, podemos fecharla en la obra de *Peter Gustav Lejeune Dirichlet* (1805-1859) de 1837, donde aparece la noción de función como correspondencia, independiente de una representación analítica o geométrica.

A lo largo de la historia, este concepto se ha ido desarrollando a partir del estudio de fenómenos del mundo que nos rodea y ha sido expresado en distintos lenguajes —verbal, gráfico, algebraico y numérico—. Por tanto, para poder conseguir una aproximación significativa al sentido de las funciones, es preciso estudiar este concepto desde distintos aspectos, utilizando diferentes lenguajes y trabajando en distintas situaciones.

Ya que las relaciones funcionales se encuentran con frecuencia en nuestro entorno, el estudio de funciones, por los estudiantes de 1º de E.S.O., debe comenzar con el tratamiento de aquellas situaciones que existen en su entorno, sin olvidar las relacionadas con otras áreas de conocimiento (las Ciencias de la Naturaleza, las Ciencias Sociales, etc.).

Desde el primer curso de la E.S.O. los estudiantes pueden ir aproximándose al concepto de función interpretando los significados de las distintas expresiones de las funciones. Estos procedimientos se han de trabajar a lo largo de toda la etapa, y se van adquiriendo a medida que aumenta la madurez cognitiva y el campo de experiencia del estudiante.

La dificultad de visualización de la representación gráfica de una función puede salvarse con la utilización de programas informáticos específicos como el <u>Geogebra</u>, o por aplicaciones elaboradas ya por algunos profesores y que están a disposición de todos, como las elaboradas dentro del <u>Proyecto Gauss</u> (Instituto Nacional de Tecnologías Educativas y de Formación del Profesorado) o en páginas personales de estos.

Bien utilizando un solo ordenador en el aula —con la PDi o mediante la proyección de la pantalla—, o bien con el uso de los ordenadores por los estudiantes en el aula de informática, estos pueden familiarizarse con la forma de las gráficas y la interpretación de sus puntos y es un apoyo inestimable para acercarse a la representación de funciones y al concepto de función.

Por último hay que indicar que la tercera parte de este capítulo pretende una primera formalización al



concepto de función y, aunque se ha tratado de seleccionar actividades en las que las relaciones funcionales son esencialmente proporcionales, puede ser de mayor dificultad.

De este modo, encontrar la expresión algebraica a partir de la representación gráfica de una función sencilla es una de las ampliaciones que se pueden proponer a los estudiantes más aventajados y puede servir para el estudio y comprensión mayor del significado de las funciones.

Por todo ello, y dependiendo del tiempo que se desee o se pueda emplear para el desarrollo de este capítulo, esta tercera parte se puede suprimir sin que haya ninguna actividad, de las partes anteriores, que quede sin terminar de desarrollar.

